By Topic

Stability and Bandwidth Implications of Digitally Controlled Grid-Connected Parallel Inverters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Turner, R. ; Dept. of Electr. & Comput. Eng., Univ. of Canterbury, Christchurch, New Zealand ; Walton, S. ; Duke, R.

The increasing use of grid-connected inverter systems is resulting in a desire for parallel-connected inverters that offer greater power capacity while maintaining the high control bandwidth achieved by individual inverters. This paper demonstrates that, in addition to the traditional stability and bandwidth limitations of digitally controlled inverters, further stability and bandwidth limitations occur when LCL inverters with a common set point are connected in parallel to a grid. This paper provides detailed discrete-time derivations for parallel grid-connected inverters and uncovers stability and bandwidth limitations that only occur in grid-connected applications and are not apparent if the system is studied in continuous time. This paper demonstrates that, in a typical application, the voltage bandwidth of an LCL parallel inverter array is 25% lower than a single module or LC parallel configuration. Both simulations and hardware demonstrations on a 105-kVA parallel three-module grid-connected system confirm the findings.

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:57 ,  Issue: 11 )