By Topic

Optimal Design of a 3.5-kV/11-kW DC–DC Converter for Charging Capacitor Banks of Power Modulators

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ortiz, G. ; Power Electron. Syst. Lab., ETH Zurich, Zürich, Switzerland ; Bortis, D. ; Biela, J. ; Kolar, J.W.

For the generation of short high-power pulses in many applications, power modulators based on capacitor discharge are used, where the peak power is drawn from the input capacitor bank. In order to continuously recharge the energy buffer during operation at a lower average power, usually, power supplies connected to the mains are used. Due to the worldwide variation in mains voltages and the desired ability to adapt the capacitor voltage of the modulator, the power supply has to support a wide input and output voltage range, whereby the supply should draw a sinusoidal current from the mains due to EMI regulations. Additionally, depending on the modulator concept, a galvanic isolation also has to be provided. In order to achieve the mentioned specifications for the considered power supply, a combination of an ac-dc and a dc-dc converter is proposed, whereas the mains voltage is rectified by a three-phase buck-boost converter to 400 Vdc, and thereafter, an isolated dc-dc converter charges the input capacitor bank of the power modulator up to 3.5 kV. This paper focuses on the basic operation and the design of the 3.5-kV/11-kW isolated dc-dc converter, which includes transformer design, efficiency-volume optimization, and component selection. In this paper, compared with the well-known flyback converter, the proposed full-bridge-based topology results in a much higher efficiency and power density.

Published in:

Plasma Science, IEEE Transactions on  (Volume:38 ,  Issue: 10 )