Cart (Loading....) | Create Account
Close category search window
 

Iterative layer-based raytracing on CUDA

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Segovia, A. ; Electr. & Comput. Eng., Univ. of Delaware, Newark, DE, USA ; Xiaoming Li ; Guang Gao

A raytracer consists in an application capable of tracing rays from a point into a scene in order to determine the closest sphere intersection along the ray's direction. Because of their recursive nature, raytracing algorithms are hard to implement on architectures which do not support recursion, such as the NVIDIA CUDA architecture. Even if the recursive portion of a typical raytracing algorithm can be rewritten iteratively, naively doing so could tamper with the image generation process, preventing the parallel algorithm's results from maintaining high fidelity to the sequential algorithm's and resulting, in many cases, in lower quality images. In this paper we address both issues by presenting a novel approach for expressing the recursive structure of raytracer algorithms iteratively, while still maintaining high fidelity to the images generated by the sequential algorithm, and leveraging the processing power of the GPU for parallelizing the image generation process. Our work focuses on designing and implementing a raytracer that renders arbitrary scenes and the reflections among the objects contained in it. However, it can be easily extended to implement other natural phenomena, such as light refraction, and to aid the iterative implementation of recursive algorithms in architectures like CUDA, which do not support recursive function calls.

Published in:

Performance Computing and Communications Conference (IPCCC), 2009 IEEE 28th International

Date of Conference:

14-16 Dec. 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.