By Topic

An Improved Quantum Genetic Algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Guo Jian ; Coll. of Comput., Nanjing Univ. of Posts & Telecommun., Nanjing, China ; Sun Li-juan ; Wang Ru-chuan ; Yu Zhong-gen

Quantum genetic algorithm (QGA) is the combination between genetic algorithm and quantum computing. In this paper, a chromosome of the standard QGA is seen as a node and the chromosome population is regarded as a network. Then the reasons for the prematurity and the stagnation of the standard QGA are analyzed from the perspective of network structure. To solve the two problems, an improved quantum genetic algorithm (IQGA) based on the small world theory is proposed. In IQGA, chromosomes encoded with qubits are divided into some sub-groups and the NW network model is introduced into the population structure. When updating chromosomes, an optimal chromosome in locality or in other sub-groups is chosen based on a certain probability as the evolution target for each chromosome. The new network structure of the chromosome population has a relatively moderate clustering coefficient and is favorable to the diversity of individual chromosomes. Tests of three classic functions prove the effectiveness and superiority of IQGA.

Published in:

Genetic and Evolutionary Computing, 2009. WGEC '09. 3rd International Conference on

Date of Conference:

14-17 Oct. 2009