By Topic

An Interleaved Totem-Pole Boost Bridgeless Rectifier With Reduced Reverse-Recovery Problems For Power Factor Correction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Bin Su ; Dept. of Electr. Eng., Zhejiang Univ., Hangzhou, China ; Zhengyu Lu

An interleaved totem-pole boost bridgeless rectifier with reduced reverse-recovery problems for power factor correction is proposed in this paper. The proposed converter consists of two interleaved and intercoupled totem-pole boost bridgeless converter cells. The two cells operate in phase-shift mode. Thus, the input current can be continuous with low ripple. For the individual cells, they operate alternatively in discontinuous current mode and the maximum duty ratio is 50%, which allows shifting the diode current with low di/dt rate to achieve zero-current switching off. Zero-voltage switching is achieved in the MOSFETs under low line input. Furthermore, the merits of totem-pole topology are inherited. The common-mode (CM) noise interference is rather low. And the potential capacity of bidirectional power conversion is retained. In brief, the conduction losses are reduced, reverse-recovery process is improved, and high efficiency is achieved. The interleaved totem-pole cell can also be applied to bidirectional dc/dc converters and ac/dc converters. Finally, an 800 W, 100 kHz experimental prototype was built to verify the theoretical analysis and feasibility of the proposed converter, whose efficiency is above 95.5% at full load under 90 V.

Published in:

Power Electronics, IEEE Transactions on  (Volume:25 ,  Issue: 6 )