By Topic

An active visual estimator for dexterous manipulation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
A. A. Rizzi ; Dept. of Electr. Eng. & Comput. Sci., Michigan Univ., Ann Arbor, MI, USA ; D. E. Koditschek

We present a working implementation of a dynamics based architecture for visual sensing. This architecture provides field rate estimates of the positions and velocities of two independent falling balls in the face of repeated visual occlusions and departures from the field of view. The practical success of this system can be attributed to the interconnection of two strongly nonlinear dynamical systems: a novel triangulating state estimator; and an image plane window controller. We detail the architecture of this active sensor, provide data documenting its performance, and offer an analysis of its soundness in the form of a convergence proof for the estimator and a boundedness proof for the controller

Published in:

IEEE Transactions on Robotics and Automation  (Volume:12 ,  Issue: 5 )