Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Toward dissipationless spin transport in semiconductors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Bernevig, B.A. ; Physics Department, Stanford University, California 94305, USA ; Zhang, S.

Spin-based electronics promises a radical alternative to charge-based electronics, namely the possibility of logic operations with much lower power consumption than equivalent charge-based logic operations. In this paper we review three potential means of dissipationless spin transport in semiconductors with and without spin-orbit coupling: the use of spin currents, propagating modes, and orbital currents. Spin and orbital currents induced by electric fields obey a fundamentally different law than charge transport, which is dissipative. Dissipationless spin currents occur in materials with strong spin-orbit coupling, such as GaAs, while orbital currents occur in materials with weak spin-orbit coupling, such as Si, but with degenerate bands characterized by an atomic orbital index. Spin currents have recently been observed experimentally. Propagating modes are the coupled spin-charge movement that occurs in semiconductors with spin-orbit coupling. In contrast to normal charge transport, which is diffusive, the spin-charge mode can exhibit propagating transport, with low energy loss over relatively large distances (>100 µm), by funneling energy between the spin and the charge component through the spin-orbit coupling channel. This opens the possibility for spin-based transport without either spin injection or spin detection. The schemes discussed in this paper are analyzed in comparison with schemes based on molecular electronics phenomena, dilute magnetic semiconductors, etc.

Note: The Institute of Electrical and Electronics Engineers, Incorporated is distributing this Article with permission of the International Business Machines Corporation (IBM) who is the exclusive owner. The recipient of this Article may not assign, sublicense, lease, rent or otherwise transfer, reproduce, prepare derivative works, publicly display or perform, or distribute the Article.  

Published in:

IBM Journal of Research and Development  (Volume:50 ,  Issue: 1 )