By Topic

Architecture of Qbox: A scalable first-principles molecular dynamics code

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $33
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
F. Gygi ; University of California at Davis, Department of Applied Science, 3013 Engineering III, Davis, California 95616, USA

We describe the architecture of Qbox, a parallel, scalable first-principles molecular dynamics (FPMD) code. Qbox is a C++/Message Passing Interface implementation of FPMD based on the plane-wave, pseudopotential method for electronic structure calculations. It is built upon well-optimized parallel numerical libraries, such as Basic Linear Algebra Communication Subprograms (BLACS) and Scalable Linear Algebra Package (ScaLAPACK), and also features an Extensible Markup Language (XML) interface built on the Apache Xerces-C library. We describe various choices made in the design of Qbox that led to excellent scalability on large parallel computers. In particular, we discuss the case of the IBM Blue Gene/L™ platform on which Qbox was run using up to 65,536 nodes. Future design challenges for upcoming petascale computers are also discussed. Examples of applications of Qbox to a variety of first-principles simulations of solids, liquids, and nanostructures are briefly described.

Note: The Institute of Electrical and Electronics Engineers, Incorporated is distributing this Article with permission of the International Business Machines Corporation (IBM) who is the exclusive owner. The recipient of this Article may not assign, sublicense, lease, rent or otherwise transfer, reproduce, prepare derivative works, publicly display or perform, or distribute the Article.  

Published in:

IBM Journal of Research and Development  (Volume:52 ,  Issue: 1.2 )