By Topic

System power management support in the IBM POWER6 microprocessor

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $33
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
M. S. Floyd ; IBM Systems and Technology Group, 11400 Burnet Road, Austin, Texas 78758, USA ; S. Ghiasi ; T. W. Keller ; K. Rajamani
more authors

The IBM POWER6™ microprocessor chip supports advanced, dynamic power management solutions for managing not just the chip but the entire server. The design facilitates a programmable power management solution for greater flexibility and integration into system- and data-center-wide management solutions. The design of the POWER6 microprocessor provides real-time access to detailed and accurate information on power, temperature, and performance. Together, the sensing, actuation, and management support available in the POWER6 processor, known as the EnergyScale™ architecture, enables higher performance, greater energy efficiency, and new power management capabilities such as power and thermal capping and power savings with explicit performance control. This paper provides an overview of the innovative design of the POWER6 processor that enables these advanced, dynamic system power management solutions.

Note: The Institute of Electrical and Electronics Engineers, Incorporated is distributing this Article with permission of the International Business Machines Corporation (IBM) who is the exclusive owner. The recipient of this Article may not assign, sublicense, lease, rent or otherwise transfer, reproduce, prepare derivative works, publicly display or perform, or distribute the Article.  

Published in:

IBM Journal of Research and Development  (Volume:51 ,  Issue: 6 )