By Topic

Dominant Audio Descriptors for Audio Classification and Retrieval

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Aleksey Fadeev ; CECS, Univ. of Louisville, Louisville, KY, USA ; Oualid Missaoui ; Hichem Frigui

In this paper, we propose a new general low-level feature representation for audio signals. Our approach, called Dominant Audio Descriptor is inspired by the MPEG-7 Dominant Color Descriptor. It is based on clustering time-local features and identifying dominant components. The features used to illustrate this approach are the well-known Mel Frequency Cepstral Coefficients. The performance of the proposed framework is evaluated on audio classification and retrieval tasks. In particular, the experiments are performed on a benchmark music data set. The results are compared to those previously obtained on the same data base. We show that our approach improved classification and retrieval results by more then 3%, and for the case of retrieval reached almost perfect retrieval rate of 99:36%. In addition, the paper presents comparative results against several state of the art classifiers, such as Hidden Markov Models, Support Vector Machines and k-Nearest Neighbors.

Published in:

Machine Learning and Applications, 2009. ICMLA '09. International Conference on

Date of Conference:

13-15 Dec. 2009