By Topic

A new method for attribute extraction with application on text classification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Biricik, G. ; Comput. Eng. Dept., Yildiz Tech. Univ., Istanbul, Turkey ; Diri, B. ; Sonmez, A.C.

We introduce a new method for dimensionality reduction by attribute extraction and evaluate its impact on text classification. The textual contents in body sections of the news in Reuters-21758 are the selected attributes for classification. Using the offered method, high dimension of attributes- words extracted from the news bodies- are projected onto a new hyper plane having dimensions equal to the number of classes. Results show that processing times of classification algorithms dramatically decrease with the attribute extraction method we offer. This is achieved by the fall of the number of attributes given to classifiers. Accuracies of the classification algorithms also increase compared to tests run without using the proposed method.

Published in:

Soft Computing, Computing with Words and Perceptions in System Analysis, Decision and Control, 2009. ICSCCW 2009. Fifth International Conference on

Date of Conference:

2-4 Sept. 2009