By Topic

A Continuous-Time Linear System Identification Method for Slowly Sampled Data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Marelli, D. ; Sch. of Electr. Eng. & Comput. Sci., Univ. of Newcastle, Newcastle, NSW, Australia ; Minyue Fu

Both direct and indirect methods exist for identifying continuous-time linear systems. A direct method estimates continuous-time input and output signals from their samples and then use them to obtain a continuous-time model, whereas an indirect method estimates a discrete-time model first. Both methods rely on fast sampling to ensure good accuracy. In this paper, we propose a more direct method where a continuous-time linear model is directly fitted to the available samples. This method produces an exact model asymptotically, modulo some possible aliasing ambiguity, even when the sampling rate is relatively slow. We also state conditions under which the aliasing ambiguity can be resolved, and we provide experiments showing that the proposed method is a valid option when a slow sampling frequency must be used but a large number of samples is available.

Published in:

Signal Processing, IEEE Transactions on  (Volume:58 ,  Issue: 5 )