By Topic

Basic Principles Concerning the Experimental Evaluation of the Frequency-Dependent Parameters of Shielded and Unshielded Three-Phase Symmetric Cables

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Faria, J.A.B. ; Center for Innovation in Electr. & Energy Eng., Tech. Univ. of Lisbon, Lisbon, Portugal ; das Neves, M.G.

The high-frequency domain characterization of overhead three-phase cables is a critical issue as far as power line carrier communications is concerned. In many instances a detailed knowledge of the electric and magnetic parameters of the cable is not available. Even if manufacturer cable-data are available, strong proximity effects among cable conductors do inhibit the utilization of closed-form expressions for the determination of the cable constitutive parameters, namely, the entries of the per-unit-length R, L, G , and C matrices. However, the determination of such parameters can always be made experimentally. In this paper, new measurement principles based on the cable excitation by independent propagation modes are presented and discussed. In the case of symmetric cables, the eigenvectors associated to the propagation modes are frequency independent, however, the propagation constants and surge impedances are not. The entries of the frequency-dependent R, L, G , and C matrices are retrieved from open and short-circuit cable measurements involving information on the modal propagation constants and modal surge impedances. For exemplification purposes, experimental results concerning a shielded three-phase cable for low voltage applications are provided. The results in this paper do not apply to buried cables where ground return phenomena would need to be accounted.

Published in:

Power Delivery, IEEE Transactions on  (Volume:26 ,  Issue: 2 )