By Topic

Approximate Repeating Pattern Mining with Gap Requirements

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Dan He ; Dept. of Comput. Sci., Univ. of California Los Angeles, Los Angeles, CA, USA ; Xingquan Zhu ; Xindong Wu

In this paper, we define a new research problem for mining approximate repeating patterns (ARP) with gap constraints, where the appearance of a pattern is subject to an approximate matching, which is very common in biological sciences. To solve the problem, we propose an ArpGap (Approximate repeating pattern mining with Gap constraints) algorithm with three major components for approximate repeating pattern mining: (1) a data-driven pattern generation approach to avoid generating unnecessary patterns; (2) a back-tracking pattern search process to discover approximate occurrences of a pattern under gap constraints; and (3) an Apriori-like deterministic pruning approach to progressively prune patterns and cease the search process if necessary. Experimental results on synthetic and real-world protein sequences assert that ArpGap is efficient in terms of memory consumption and computational cost.

Published in:

Tools with Artificial Intelligence, 2009. ICTAI '09. 21st International Conference on

Date of Conference:

2-4 Nov. 2009