Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Scale-based clustering using the radial basis function network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chakravarthy, S.V. ; Dept. of Electr. & Comput. Eng., Texas Univ., Austin, TX, USA ; Ghosh, J.

This paper shows how scale-based clustering can be done using the radial basis function network (RBFN), with the RBF width as the scale parameter and a dummy target as the desired output. The technique suggests the “right” scale at which the given data set should be clustered, thereby providing a solution to the problem of determining the number of RBF units and the widths required to get a good network solution. The network compares favorably with other standard techniques on benchmark clustering examples. Properties that are required of non-Gaussian basis functions, if they are to serve in alternative clustering networks, are identified. This work, on the whole, points out an important role played by the width parameter in RBFN, when observed over several scales, and provides a fundamental link to the scale space theory developed in computational vision

Published in:

Neural Networks, IEEE Transactions on  (Volume:7 ,  Issue: 5 )