By Topic

An optimal tracking neuro-controller for nonlinear dynamic systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Young-Moon Park ; Dept. of Electr. Eng., Seoul Nat. Univ., South Korea ; Myeon-Song Choi ; K. Y. Lee

Multilayer neural networks are used to design an optimal tracking neuro-controller (OTNC) for discrete-time nonlinear dynamic systems with quadratic cost function. The OTNC is made of two controllers: feedforward neuro-controller (FFNC) and feedback neuro-controller (FBNC). The FFNC controls the steady-state output of the plant, while the FBNC controls the transient-state output of the plant. The FFNC is designed using a novel inverse mapping concept by using a neuro-identifier. A generalized backpropagation-through-time (GBTT) algorithm is developed to minimize the general quadratic cost function for the FBNC training. The proposed methodology is useful as an off-line control method where the plant is first identified and then a controller is designed for it. A case study for a typical plant with nonlinear dynamics shows good performance of the proposed OTNC

Published in:

IEEE Transactions on Neural Networks  (Volume:7 ,  Issue: 5 )