By Topic

Analysis of Underfrequency Load Shedding Using a Frequency Gradient

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Urban Rudez ; Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia ; Rafael Mihalic

Underfrequency load shedding is one of the most important protection systems, as in many cases it represents the last chance to prevent a system blackout after a serious disturbance occurs in a power system. In order to improve traditional schemes, many efforts have been concentrated on attempts to use the frequency gradient as an indicator for determining the lack of active power in a system. This paper concentrates on analyzing the factors that influence the gradient. Analyses have shown that the gradient can give misleading information about the active-power deficit, as long as certain factors are ignored or assumed to be constant. A draft of a gradient-based underfrequency load-shedding scheme is presented, which also highlights the problems associated with the use of gradient. On the one hand, a frequency gradient alone does not appear to be sufficient for the active-power deficit estimation. Nevertheless, for the actual load-shedding procedure it is found to be very useful.

Published in:

IEEE Transactions on Power Delivery  (Volume:26 ,  Issue: 2 )