By Topic

flowNet: Flow-Based Approach for Efficient Analysis of Complex Biological Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Young-Rae Cho ; Dept. of Comput. Sci., Baylor Univ., Waco, TX, USA ; Lei Shi ; Aidong Zhang

Biological networks having complex connectivity have been widely studied recently. By characterizing their inherent and structural behaviors in a topological perspective, these studies have attempted to discover hidden knowledge in the systems. However, even though various algorithms with graph-theoretical modeling have provided fundamentals in the network analysis, the availability of practical approaches to efficiently handle the complexity has been limited. In this paper, we present a novel flow-based approach, called flowNet, to efficiently analyze large-sized, complex networks. Our approach is based on the functional influence model that quantifies the influence of a biological component on another. We introduce a dynamic flow simulation algorithm to generate a flow pattern which is a unique characteristic for each component. The set of patterns can be used in identifying functional modules (i.e., clustering). The proposed flow simulation algorithm runs very efficiently in sparse networks. Since our approach uses a weighted network as an input, we also discuss supervised and unsupervised weighting schemes for unweighted biological networks. As experimental results in real applications to the yeast protein interaction network, we demonstrate that our approach outperforms previous graph clustering methods with respect to accuracy.

Published in:

Data Mining, 2009. ICDM '09. Ninth IEEE International Conference on

Date of Conference:

6-9 Dec. 2009