Cart (Loading....) | Create Account
Close category search window
 

Fast sag/swell detection method for fuzzy logic controlled dynamic voltage restorer

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Teke, A. ; Dept. of Electr. & Electron. Eng., Cukurova Univ., Adana, Turkey ; Bayindir, K. ; Tumay, M.

In this study, the design and analysis of a fuzzy logic (FL) controlled dynamic voltage restorer (DVR) are presented and extended to perform fast fault detection. A new control method for DVR is proposed by combining FL with a carrier modulated PWM inverter. The proposed control scheme is simple to design and has excellent voltage compensation capabilities. The proposed method for voltage sag/swell detection has the ability of detecting different kinds of power disturbances faster than conventional detection methods. Effectiveness of the proposed detection method is shown by comparison with the conventional methods in the literature. Simulation results under unbalanced supply voltage are presented to evaluate the performance of the designed DVR.

Published in:

Generation, Transmission & Distribution, IET  (Volume:4 ,  Issue: 1 )

Date of Publication:

January 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.