By Topic

Heart surface motion estimation framework for robotic surgery employing meshless methods

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Bogatyrenko, E. ; Intell. Sensor-Actuator-Syst. Lab., Univ. Karlsruhe (TH), Karlsruhe, Germany ; Hanebeck, U.D. ; Szabo, G.

A novel heart surface motion estimation framework for a robotic surgery on a stabilized beating heart is proposed. It includes an approach for the reconstruction and prediction of heart surface motion based on a novel physical model of the intervention area described by a distributed-parameter system. Instead of conventional element methods, a meshless method is used for a spatial and temporal decomposition of this system. This leads to a finite-dimensional state-space form. Furthermore, the state of the resulting lumped-parameter system, which provides an approximation of the deflection and velocity of the heart surface, is dynamically estimated under consideration of uncertainties both occurring in the system and arising from noisy camera measurements. By using the estimation results, an accurate reconstruction of heart surface motion for the synchronisation of the surgical instruments is also achieved at occluded or non-measurement points.

Published in:

Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ International Conference on

Date of Conference:

10-15 Oct. 2009