By Topic

Performance and cost optimization for multiple large-scale grid workflow applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Rubing Duan ; University of Innsbruck ; Prodan, R. ; Fahringer, T.

Scheduling large-scale applications on the Grid is a fundamental challenge and is critical to application performance and cost. Large-scale applications typically contain a large number of homogeneous and concurrent activities which are main bottlenecks, but open great potentials for optimization. This paper presents a new formulation of the well-known NP-complete problems and two novel algorithms that addresses the problems. The optimization problems are formulated as sequential cooperative games among workflow managers. Experimental results indicate that we have successfully devised and implemented one group of effective, efficient, and feasible approaches. They can produce soultuins of significantly better performance and cost than traditional algorithms. Our algorithms have considerably low time complexity and can assign 1,000,000 activities to 10,000 processors within 0.4 second on one Opteron processor. Moreover, the solutions can be practically performed by workflow managers, and the violation of QoS can be easily detected, which are critical to fault tolerance.

Published in:

Supercomputing, 2007. SC '07. Proceedings of the 2007 ACM/IEEE Conference on

Date of Conference:

10-16 Nov. 2007