Cart (Loading....) | Create Account
Close category search window
 

CFP: Cooperative Fast Protection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Bin Wu ; Dept. of Electr. & Comput. Eng., Univ. of Waterloo, Waterloo, ON, Canada ; Pin-Han Ho ; Yeung, K.L. ; Tapolcai, J.
more authors

We introduce a novel protection scheme, called cooperative fast protection (CFP), to fight against a single link failure in survivable(wavelength division multiplexing (WDM) mesh networks. CFP achieves capacity-efficient fast protection with features of node-autonomy and failure-independency. Though CFP organizes spare capacity into pre-cross-connected cycles, it differs from p-cycle by reusing the released working capacity of the disrupted lightpaths (i.e., stubs) in a cooperative manner, and utilizing both the released stubs and the spare capacity on the cycles to set up backup paths. This is achieved by allowing all failure-aware nodes to switch traffic upon a link failure, such that the disrupted lightpaths can be restored even if the end nodes of the failed link are not on the cycles. CFP also differs from FIPP (Failure Independent Path Protecting) p-cycle by reducing optical recovery time, and not requiring the cycles to pass through the source nodes of the protected lightpaths. By jointly optimizing both working and spare capacity placement, we formulate an ILP (Integer Linear Program) for CFP design without candidate cycle enumeration. Theoretical analysis and numerical results show that CFP significantly outperforms p-cycle based schemes by achieving faster optical recovery speed with much higher capacity efficiency. The performance gain is achieved at the expense of higher computation complexity, but without involving any additional signaling mechanism in the optical domain.

Published in:

Lightwave Technology, Journal of  (Volume:28 ,  Issue: 7 )

Date of Publication:

April1, 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.