By Topic

High Q-factor inductors integrated on MCM Si substrates

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Zu, L. ; Dept. of Electr. & Comput. Eng., Rutgers Univ., Piscataway, NJ, USA ; Yicheng Lu ; Frye, R.C. ; Lau, M.Y.
more authors

High quality factor (Q) inductors were designed and fabricated on high-resistivity (2000 Ω·cm) Si substrates with multichip module (MCM) fabrication technology. A Q-factor of 30 was achieved for an inductor of 4 nH at 1-2 GHz. To enhance the Q-factor and reduce the parasitic coupling capacitance, a staggered double metal-layered structure was utilized by taking advantage of the double-layered metal lines in MCM. With electromagnetic simulation tools, computer-aided analysis was used to optimize the device characteristics. The skin effect and the lossy substrate effect on the performance of the radio frequency (RF) thin-film inductors were studied. The fabrication process used polyimide as the dielectric layer and aluminum as the metal layer. The use of the low dielectric-constant material, polyimide, reduces the parasitic coupling capacitance between metal lines and increases the quality factor and the self-resonant frequency for the RF integrated inductors

Published in:

Components, Packaging, and Manufacturing Technology, Part B: Advanced Packaging, IEEE Transactions on  (Volume:19 ,  Issue: 3 )