Cart (Loading....) | Create Account
Close category search window
 

Time-invariant orthonormal wavelet representations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Pesquet, J. ; Lab. des Signaux et Syst., CNRS, Gif-sur-Yvette, France ; Krim, H. ; Carfantan, H.

A simple construction of an orthonormal basis starting with a so-called mother wavelet, together with an efficient implementation gained the wavelet decomposition easy acceptance and generated a great research interest in its applications. An orthonormal basis may not, however, always be a suitable representation of a signal, particularly when time (or space) invariance is a required property. The conventional way around this problem is to use a redundant decomposition. We address the time-invariance problem for orthonormal wavelet transforms and propose an extension to wavelet packet decompositions. We show that it,is possible to achieve time invariance and preserve the orthonormality. We subsequently propose an efficient approach to obtain such a decomposition. We demonstrate the importance of our method by considering some application examples in signal reconstruction and time delay estimation

Published in:

Signal Processing, IEEE Transactions on  (Volume:44 ,  Issue: 8 )

Date of Publication:

Aug 1996

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.