By Topic

Thread to Core Assignment in SMT On-Chip Multiprocessors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Acosta, C. ; HiPEAC Eur. Network of Excellence, Univ. Politec. de Catalunya, Barcelona, Spain ; Cazorla, F.J. ; Ramirez, A. ; Valero, M.

State-of-the-art high-performance processors like the IBM POWER5 and Intel i7 show a trend in industry towards on-chip Multiprocessors (CMP) involving Simultaneous Multithreading (SMT) in each core. In these processors, the way in which applications are assigned to cores plays a key role in the performance of each application and the overall system performance. In this paper we show that the system throughput highly depends on the Thread to Core Assignment (TCA), regardless the SMT Instruction Fetch (IFetch) Policy implemented in the cores. Our results indicate that a good TCA can improve the results of any underlying IFetch Policy, yielding speedups of up to 28%. Given the relevance of TCA, we propose an algorithm to manage it in CMP+SMT processors. The proposed throughput-oriented TCA Algorithm takes into account the workload characteristics and the underlying SMT IFetch Policy. Our results show that the TCA Algorithm obtains thread-to-core assignments 3% close to the optimal assignation for each case, yielding system throughput improvements up to 21%.

Published in:

Computer Architecture and High Performance Computing, 2009. SBAC-PAD '09. 21st International Symposium on

Date of Conference:

28-31 Oct. 2009