By Topic

Seizure prediction for epilepsy using a multi-stage phase synchrony based system

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
James, C.J. ; Signal Process. & Control Group, Univ. of Southampton, Southampton, UK ; Gupta, D.

Seizure onset prediction in epilepsy is a challenge which is under investigation using many and varied signal processing techniques. Here we present a multi-stage phase synchrony based system that brings to bear the advantages of many techniques in each substage. The 1st stage of the system unmixes continuous long-term (2-4 days) multichannel scalp EEG using spatially constrained Independent Component Analysis and estimates the long term significant phase synchrony dynamics of narrowband (2-8 Hz and 8-14 Hz) seizure components. It then projects multidimensional features onto a 2-D map using Neuroscale and evaluates the probability of predictive events using Gaussian Mixture Models. We show the possibility of seizure onset prediction within a prediction window of 35-65 minutes with a sensitivity of 65-100% and specificity of 65-80% across epileptic patients.

Published in:

Engineering in Medicine and Biology Society, 2009. EMBC 2009. Annual International Conference of the IEEE

Date of Conference:

3-6 Sept. 2009