Cart (Loading....) | Create Account
Close category search window
 

Frequency-Shift Acceleration Control for Anti-Islanding of a Distributed-Generation Inverter

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Seul-Ki Kim ; Renewable Energy Syst. Res. Center, Korea Electrotechnol. Res. Inst., Changwon, South Korea ; Jin-Hong Jeon ; Jong-Bo Ahn ; Byongjun Lee
more authors

This paper proposes frequency-shift acceleration control for anti-islanding of an inverter-based distributed generator. The proposed control is based on frequency positive feedback in the synchronous dq frame. Overall, the scheme of the proposed control is described. The design methodology of the frequency-shift acceleration gain is presented based on small-signal stability and step input response. The proposed control is intended for zero nondetection zone, noncompromised power quality, and easy implementation without additional devices required. Simulation and experimental results verify that the proposed anti-islanding scheme and the gain design approach are effective and useful in real applications.

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:57 ,  Issue: 2 )

Date of Publication:

Feb. 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.