By Topic

On-Board Vision Processing for Small UAVs: Time to Rethink Strategy

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Shoaib Ehsan ; Sch. of Comput. Sci. & Electron. Eng., Univ. of Essex, Colchester, UK ; Klaus D. McDonald-Maier

The ultimate research goal for unmanned aerial vehicles (UAVs) is to facilitate autonomy of operation. Research in the last decade has highlighted the potential of vision sensing in this regard. Although vital for accomplishment of missions assigned to any type of unmanned aerial vehicles, vision sensing is more critical for small aerial vehicles due to lack of high precision inertial sensors. In addition, uncertainty of GPS signal in indoor and urban environments calls for more reliance on vision sensing for such small vehicles. With off-line processing does not offer an attractive option in terms of autonomy, these vehicles have been challenging platforms to implement vision processing on-board due to their strict payload capacity and power budget. The strict constraints drive the need for new vision processing architectures for small unmanned aerial vehicles. Recent research has shown encouraging results with FPGA based hardware architectures. This paper reviews the bottle necks involved in implementing vision processing on-board,advocates the potential of hardware based solutions to tackle strict constraints of small unmanned aerial vehicles and finally analyzes feasibility of ASICs, Structured ASICs and FPGAs for use on future systems.

Published in:

Adaptive Hardware and Systems, 2009. AHS 2009. NASA/ESA Conference on

Date of Conference:

July 29 2009-Aug. 1 2009