By Topic

Maximal ratio combining receivers for dual antenna RFID readers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Angerer, C. ; Inst. of Commun. & Radio-Freq. Eng., Vienna Univ. of Technol., Vienna, Austria ; Langwieser, Robert ; Maier, G. ; Rupp, M.

Radio frequency identification (RFID) systems at ultra high frequencies operate in an environment exposed to fading. While state-of-the-art RFID readers utilise multiple receive antennas with antenna multiplexing in order to deal with the multipath propagation environment, this contribution proposes maximal ratio combining at RFID reader receivers. A dual receive antenna RFID reader is presented in this paper. The composition of the receive signal and the constellation in the I/Q plane on each antenna is analysed and discussed thoroughly. With that knowledge, we design a receiver estimating the channel coefficients and realising maximal ratio combining of the received signals, thus achieving the optimum combination of receive signals in terms of SNR maximisation. Underlying assumptions on the receive signals at the RFID reader for the design of the receiver have been cross-verified with measurements. Furthermore, the receiver has been implemented on an FPGA and functionally verified.

Published in:

Wireless Sensing, Local Positioning, and RFID, 2009. IMWS 2009. IEEE MTT-S International Microwave Workshop on

Date of Conference:

24-25 Sept. 2009