Cart (Loading....) | Create Account
Close category search window
 

Rearranging algorithms for log2(N, 0, p) switching networks with even number of stages

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Kabacinski, W. ; Dept. of Commun. & Comput. Networks, Poznan Univ. of Technol., Poznan, Poland ; Kleban, J. ; Michalski, M. ; Zal, M.
more authors

In this paper we consider the rearrangeable multi-plane banyan-type switching fabrics, called also log2(N, 0, p) switching networks, with even number of stages. For such networks different rearranging algorithms have been proposed for both: one-at-a-time and simultaneous connection models. In this paper we consider the one-at-a-time connection model, where connections arrive to the system one-by-one, and in case of blocking rearrangements are realized. To our knowledge, known algorithms require several rearrangements, and the number of such rearrangements have not been considered in the literature. We propose the new rearranging algorithm for the multi-plane banyan-type switching fabric composed of even number of stages. This algorithm leads to success using only one rearrangement. We also introduce the modified version of this new algorithm, in which rearrangement of an existing connecting path can be realized without its interruption.

Published in:

High Performance Switching and Routing, 2009. HPSR 2009. International Conference on

Date of Conference:

22-24 June 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.