By Topic

An OBS RWA formulation for asynchronous loss-less transfer in OBS networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Coutelen, T. ; ECE, Concordia Univ., Montreal, QC, Canada ; Hebuterne, G. ; Jaumard, B.

Optical Burst Switching (OBS) has been proposed to increase the resource utilization achieved by Optical Circuit Switching (OCS), which is impaired by its coarse granularity. A crucial step toward OBS maturity deals with the feature of lossless guaranteed transfers. No contention resolution mechanism, even combined with efficient pro-active mechanisms has been able to provide such a guarantee so far. In this paper, we investigate further the ldquooffset based priorityrdquo and the ldquostreamline effectrdquo to identify flow isolation patterns. We then propose a specific medium access protocol in order to preserve the isolation of transit bursts over ingress bursts. The isolation patterns are translated into an MILP optimization OBS model that performs routing and wavelength assignment (RWA-OBS). Using the routes obtained with RWA-OBS guarantees asynchronous loss-less transfers. It preserves the statistical multiplexing potential and the asynchronous nature of OBS, and thus addresses the drawbacks of WR-OBS and SOBS which were recently introduced in polymorphous OBS (POBS) (Qiao et al. 2006). Experimental results show the benefits of RWA-OBS over WR-OBS in terms of grade of service, while sidestepping the synchronization issues of SOBS with similar grade of service.

Published in:

High Performance Switching and Routing, 2009. HPSR 2009. International Conference on

Date of Conference:

22-24 June 2009