By Topic

A Motor Control Strategy With Virtual Musculoskeletal Systems for Compliant Anthropomorphic Robots

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Sang-Ho Hyon ; Int. Cooperative Res. Project, Japan Sci. & Technol. Agency, Kawaguchi, Japan

This paper presents a full-body compliant motor control strategy with a virtual musculoskeletal system for anthropomorphic robots. This integrates a task-space control module and a joint stiffness control module on joint torque control implementation. The passivity-based task-space controller manages the Cartesian forces and provides the robot with full-body compliance and balancing ability, and the joint stiffness controller locally stabilizes the desired posture trajectories. We discuss the advantage of the proposed strategy from two practical computational points of view: computational cost in the postural maintenance and redundancy resolution to suppress the internal motions. The implementation issues of the torque controller with hydraulic actuators are also discussed. The effectiveness of the proposed method is empirically validated by four kinds of full-body motion control experiments on our hydraulic biped anthropomorphic robot.

Published in:

IEEE/ASME Transactions on Mechatronics  (Volume:14 ,  Issue: 6 )