Cart (Loading....) | Create Account
Close category search window
 

Analytical Modeling and Experimental Validation of the Braided Pneumatic Muscle

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Doumit, M. ; Dept. of Mech. Eng., Univ. of Ottawa, Ottawa, ON, Canada ; Fahim, A. ; Munro, M.

Static models of braided pneumatic muscles (BPMs) reported in the research literature fairly accurately predict the muscle-force-carrying capacity. These models, however, rely on experimentally determined parameters that are valid only for the specific muscle configuration under consideration. This paper presents a fully analytical BPM static model that does not depend on experimentally determined parameters. The proposed approach is based on Newtonian mechanics that considers the mechanical and the geometrical properties of the muscle. Distinctively, this paper includes the muscle end-fixture-diameter effect. Results from the developed model are compared with the experimental ones that have been obtained from prototype BPMs.

Published in:

Robotics, IEEE Transactions on  (Volume:25 ,  Issue: 6 )

Date of Publication:

Dec. 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.