By Topic

Classification of Large Biomedical Data Using ANNs Based on BFGS Method

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Livieris, I.E. ; Dept. of Math., Univ. of Patras, Patras, Greece ; Apostolopoulou, M.S. ; Sotiropoulos, D.G. ; Sioutas, S.
more authors

Artificial neural networks have been widely used for knowledge extraction from biomedical datasets and constitute an important role in bio-data exploration and analysis. In this work, we proposed a new curvilinear algorithm for training large neural networks which is based on the analysis of the eigenstructure of the memoryless BFGS matrices. The proposed method preserves the strong convergence properties provided by the quasi-Newton direction while simultaneously it exploits the nonconvexity of the error surface through the computation of the negative curvature direction without using any storage and matrix factorization. Moreover, for improving the generalization capability of trained ANNs, we explore the incorporation of several dimensionality reduction techniques as a pre-processing step.

Published in:

Informatics, 2009. PCI '09. 13th Panhellenic Conference on

Date of Conference:

10-12 Sept. 2009