Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. For technical support, please contact us at onlinesupport@ieee.org. We apologize for any inconvenience.
By Topic

Investigation of the Energy Regeneration of Active Suspension System in Hybrid Electric Vehicles

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Montazeri-Gh, M. ; Dept. of Mech. Eng., Iran Univ. of Sci. & Technol., Tehran, Iran ; Soleymani, M.

This paper investigates the idea of the energy regeneration of active suspension (AS) system in hybrid electric vehicles (HEVs). For this purpose, extensive simulation and control methods are utilized to develop a simultaneous simulation in which both HEV powertrain and AS systems are simulated in a unified medium. In addition, a hybrid energy storage system (ESS) comprising electrochemical batteries and ultracapacitors (UCs) is proposed for this application. Simulation results reveal that the regeneration of the AS energy results in an improved fuel economy. Moreover, by using the hybrid ESS, AS load fluctuations are transferred from the batteries to the UCs, which, in turn, will improve the efficiency of the batteries and increase their life.

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:57 ,  Issue: 3 )