By Topic

Novel Switched Reluctance Machine Configuration With Higher Number of Rotor Poles Than Stator Poles: Concept to Implementation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Desai, P.C. ; Dept. of Electr. & Comput. Eng., Illinois Inst. of Technol., Chicago, IL, USA ; Krishnamurthy, M. ; Schofield, N. ; Emadi, A.

There is a great demand for efficient, quiet, reliable, and cost-effective motor drives for propulsion systems in hybrid and plug-in hybrid electric vehicles. Owing to a rigid structure and the absence of magnetic source on the rotor, a switched reluctance machine (SRM) is inherently robust and cost effective. In spite of these advantages, several challenges in the control of this machine remain an issue, including high levels of torque ripple, acoustic noise, and a relatively low torque density. This paper presents a new family of SRMs which have higher number of rotor poles than stator poles. Using a newly defined pole design formula, several novel combinations of the stator-rotor poles have been proposed. From the simulation and experimental analysis of a prototype 6/10 configuration, it has been observed that this machine produces higher torque per unit volume and comparable torque ripple when compared to a conventional 6/4 SRM with similar number of phases and constraints in volume. The results presented in this paper make this family of machines a strong contender for survivable high-performance applications for automotive propulsion systems. The simulation and experimental results for the prototype 6/10 configuration have been presented and compared to a conventional 6/4 design for verification.

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:57 ,  Issue: 2 )