By Topic

Efficient Sensor Selection for Active Information Fusion

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yongmian Zhang ; Department of Electrical, Computer and Systems Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA ; Qiang Ji

In our previous paper, we formalized an active information fusion framework based on dynamic Bayesian networks to provide active information fusion. This paper focuses on a central issue of active information fusion, i.e., the efficient identification of a subset of sensors that are most decision relevant and cost effective. Determining the most informative and cost-effective sensors requires an evaluation of all the possible subsets of sensors, which is computationally intractable, particularly when information-theoretic criterion such as mutual information is used. To overcome this challenge, we propose a new quantitative measure for sensor synergy based on which a sensor synergy graph is constructed. Using the sensor synergy graph, we first introduce an alternative measure to multisensor mutual information for characterizing the sensor information gain. We then propose an approximated nonmyopic sensor selection method that can efficiently and near-optimally select a subset of sensors for active fusion. The simulation study demonstrates both the performance and the efficiency of the proposed sensor selection method.

Published in:

IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)  (Volume:40 ,  Issue: 3 )