By Topic

Theoretical Framework for Eliminating Redundancy in Workflows

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Saha, D. ; IBM India, Bangalore, India ; Samanta, A. ; Sarangi, S.R.

In this paper we look at combining and compressing a set of workflows, such that computation can be minimized. In this context, we look at two novel theoretical problems with applications in workflow systems and services research, which are duals of each other. The first problem looks at merging the maximum number of vertices in two DAGs (directed acyclic graphs) without creating a cycle. We prove that the dual of this problem is the problem of maximizing the length of the LCS (longest common subsequence) between all pairs of topological orderings of the two DAGs. This formulation generalizes to a new definition of LCS between complex structures like workflows or XML documents, which we call M-LCS. Subsequently, we present a taxonomy of the different kinds of problems in this set, and find the M-LCS solution for a tree and a chain with a dynamic programming algorithm. Along with this theoretical formulation, we implement the algorithms in C++ and run it on representative workflows. We evaluate the performance of the M-LCS algorithm on a set of random workflows and observe that it is substantially better than traditional AI based approaches.

Published in:

Services Computing, 2009. SCC '09. IEEE International Conference on

Date of Conference:

21-25 Sept. 2009