By Topic

Coordinate Conversion and Tracking for Very Long Range Radars

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)

The problem of tracking with very long range radars is studied in this paper. First, the measurement conversion from a radar's r-u-v coordinate system to the Cartesian coordinate system is discussed. Although the nonlinearity of this coordinate transformation appears insignificant based on the evaluation of the bias of the converted measurements, it is shown that this nonlinearity can cause significant covariance inconsistency in the conventionally converted measurements (CM1). Since data association depends critically on filter consistency, this issue is very important. Following this, it is shown that a suitably corrected conversion (CM2) eliminates the inconsistency. Then, initialized with the converted measurements (using CM2), four Cartesian filters are evaluated. It is shown that, among these filters, the converted measurement Kalman filter with second order Taylor expansion (CM2KF) is the only one that is consistent for very long range tracking scenarios. Another two approaches, the range-direction-cosine extended Kalman filter (ruvEKF) and the unscented Kalman filter (UKF) are also evaluated and shown to suffer from consistency problems. However, the CM2KF has the disadvantage of reduced accuracy in the range direction. To fix this problem, a consistency-based modification for the standard extended Kalman filter (E1KF) is proposed. This leads to a new filtering approach, designated as measurement covariance adaptive extended Kalman filter (MCAEKF). For very long range tracking scenarios, the MCAEKF is shown to produce consistent filtering results and be able to avoid the loss of accuracy in the range direction. It is also shown that the MCAEKF meets the posterior Carmer-Rao lower bound for the scenarios considered.

Published in:

IEEE Transactions on Aerospace and Electronic Systems  (Volume:45 ,  Issue: 3 )