By Topic

Effect of Buffer Layer Texture on the Crystallization of CoFeB and on the Tunnel Magnetoresistance in MgO Based Magnetic Tunnel Junctions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
J. Cao ; INESC Microsistemas e Nanotecnologias (INESC MN), IN-Inst. of Nanosci. & Nanotechnol., Lisbon, Portugal ; J. Kanak ; T. Stobiecki ; P. Wisniowski
more authors

Two different buffer layers (Ta/Ru/Ta and thick Ta) were tested for MgO MTJs. The influence of buffer layer texture on the crystallization of CoFeB bottom and top electrodes and on the tunnel magnetoresistance effect was investigated. X-ray results suggest that, after anneal, the CoFeB layer above MgO is well (200) textured and it does not depend on the buffer layer since MgO (100) barrier supplies a good template for CoFeB (200) orientation, while the crystallization of bottom CoFeB layer relies on the buffer layer texture. Different from Ta (110) found in Ta/Ru/Ta buffer layer, a thick Ta buffer layer has beta-(200) texture, which induces (001) oriented grains in MnPt layer. Because of the epitaxy relationship between MnPt and FeCo with MnPt(001)[100]//FeCo(200)[110], MnPt (001) oriented grains lead to the crystallization of bottom CoFeB layer with (200) orientation. As a result, higher TMR ratio up to 290% was achieved in the EB-MTJs with thick Ta buffer layer.

Published in:

IEEE Transactions on Magnetics  (Volume:45 ,  Issue: 10 )