Cart (Loading....) | Create Account
Close category search window
 

Simulation of Mutually Coupled Oscillators Using Nonlinear Phase Macromodels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Harutyunyan, D. ; Dept. of Math. & Comput. Sci., Univ. of Eindhoven, Eindhoven, Netherlands ; Rommes, J. ; ter Maten, J. ; Schilders, W.

Design of integrated RF circuits requires detailed insight in the behavior of the used components. Unintended coupling and perturbation effects need to be accounted for before production, but full simulation of these effects can be expensive or infeasible. In this paper, we present a method to build nonlinear phase macromodels of voltage-controlled oscillators. These models can be used to accurately predict the behavior of individual and mutually coupled oscillators under perturbation at a lower cost than full circuit simulations. The approach is illustrated by numerical experiments with realistic designs.

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:28 ,  Issue: 10 )

Date of Publication:

Oct. 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.