By Topic

Asymmetrical Spectral Response in Fiber Fabry–PÉrot Interferometers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

We demonstrate that the reflection spectrum of a fiber Fabry–PÉrot formed by a single-mode fiber and an external mirror does not exhibit the standard Lorentzian profile of a conventional bulk-optic Fabry-PÉrot, but is instead highly asymmetric. Measurements indicate that the sign of this asymmetry is different for dielectric and metal mirrors. We show that this asymmetry is due to one of two mechanisms, namely the beam diffraction in the cavity and the complex phase upon reflection from a metal layer. We present an analytical approach to accurately model these spectra, and provide simple analytical formulas, useful in the design and optimization of fiber Fabry-PÉrot-based sensors. Specifically, we present expressions for the maximum finesse and the condition to obtain full contrast in a fiber Fabry-PÉrot. These results are widely applicable, in particular to both low- and high-finesse interferometers.

Published in:

Lightwave Technology, Journal of  (Volume:27 ,  Issue: 24 )