By Topic

Multiscale Model of Liver DCE-MRI Towards a Better Understanding of Tumor Complexity

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Muriel Mescam ; Department of Physiology and Biotechnology & Bioengineering Center, Medical College of Wisconsin, Milwaukee, WI, USA ; Marek Kretowski ; Johanne Bezy-Wendling

The use of quantitative imaging for the characterization of hepatic tumors in magnetic resonance imaging (MRI) can improve the diagnosis and therefore the treatment of these life-threatening tumors. However, image parameters remain difficult to interpret because they result from a mixture of complex processes related to pathophysiology and to acquisition. These processes occur at variable spatial and temporal scales. We propose a multiscale model of liver dynamic contrast-enhanced (DCE) MRI in order to better understand the tumor complexity in images. Our design couples a model of the organ (tissue and vasculature) with a model of the image acquisition. At the macroscopic scale, vascular trees take a prominent place. Regarding the formation of MRI images, we propose a distributed model of parenchymal biodistribution of extracellular contrast agents. Model parameters can be adapted to simulate the tumor development. The sensitivity of the multiscale model of liver DCE-MRI was studied through observations of the influence of two physiological parameters involved in carcinogenesis (arterial flow and capillary permeability) on its outputs (MRI images at arterial and portal phases). Finally, images were simulated for a set of parameters corresponding to the five stages of hepatocarcinogenesis (from regenerative nodules to poorly differentiated HepatoCellular Carcinoma).

Published in:

IEEE Transactions on Medical Imaging  (Volume:29 ,  Issue: 3 )