Scheduled System Maintenance on December 17th, 2014:
IEEE Xplore will be upgraded between 2:00 and 5:00 PM EST (18:00 - 21:00) UTC. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Carrier Dynamics in UV InGaN Multiple Quantum Well Inverted Hexagonal Pits

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Llopis, A. ; Univ. of North Texas (UNT), Denton, TX, USA ; Jie Lin ; Jianyou Li ; Pereira, S.
more authors

The emission and recombination characteristics of UV or blue light emission from InGaN/GaN quantum well (QW) structures influenced by V-shaped pits have been investigated by near-field and time-resolved photoluminescence measurements. Localization of charge carriers due to the potential barriers caused by the V-shaped pit formation is observed to be modified by thermal excitation. Temperature dependence of recombination dynamics shows evidence of a more complex potential barrier produced by the inverted hexagonal pits embedded within the multiple QWs. The emission from the narrow V-shaped pit QWs shows anomalous temperature dependence behavior that is significantly different from the emission from c-plane QWs. The carrier recombination process in c-plane QWs is significantly longer ~ 5 ns compared to the ~ 1.5 ns in V-shaped pit QWs at low temperatures due to the larger piezoelectric fields in wider wells. At room temperature, the recombination lifetimes are comparable due to increased carrier separation and delocalization within the V-shaped pit QWs.

Published in:

Selected Topics in Quantum Electronics, IEEE Journal of  (Volume:15 ,  Issue: 5 )