Cart (Loading....) | Create Account
Close category search window

In Situ Comparison of Si/High- \kappa and \hbox {Si}/ \hbox {SiO}_{2} Channel Properties in SOI MOSFETs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Loan Pham-Nguyen ; Lab. d''Hyperfreq. et Caracterisation, Inst. de Microelectron., Electromagn. et Photonique, Grenoble, France ; Fenouillet-Beranger, C. ; Vandooren, A. ; Skotnicki, T.
more authors

Detailed measurements of front- and back-channel characteristics in advanced SOI MOSFETs (ultrathin Si film, high-kappa, metal gate, and selective epitaxy of source/drain) are used to reveal and compare the transport properties at the corresponding Si/high- kappa (HfO2 or HfSiON) and Si/SiO2 interfaces. Low-temperature operation magnifies the difference between these two interfaces in terms of carrier mobility, threshold voltage, and subthreshold swing. As compared with Si/SiO2, the low-field mobility is lower at the Si/high-kappa interface and increases less rapidly at low temperature, reflecting additional scattering mechanisms governed by high-kappa and neutral defects.

Published in:

Electron Device Letters, IEEE  (Volume:30 ,  Issue: 10 )

Date of Publication:

Oct. 2009

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.