Cart (Loading....) | Create Account
Close category search window
 

Multiphysics Modeling and Analysis of the Photoinductive Imaging Effect for Crack Detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Cheng-Chi Tai ; Dept. of Electr. Eng., Nat. Cheng Kung Univ., Tainan, Taiwan ; Yen-Lin Pan

Numerical multiphysics modeling of the photoinductive imaging (PI) effect was performed with a 2-D transient to characterize corner cracks at the edge of a specimen with a bolt hole. We present how the finite-element method (FEM) can be utilized to model the PI effect and observe the influence of critical factors on the coil probe impedance for a rectangular crack in the Ti-6Al-4V specimen. As anticipated, the proposed model can show that the PI method has a higher spatial resolution in the defect in 2-D models compared to the conventional eddy current testing method. The FEM simulation results for 0.25-, 0.50-, and 0.75-mm rectangular notches are shown and discussed. The effects of coil current frequency, laser-point temperature, and lift-off distance on the PI signal are also examined and analyzed. We demonstrate that the PI effect is a novel sensing method for characterizing the geometric shape of cracks and that the enhanced output signals of the coil probe can also be obtained given an appropriate quantity of factors.

Published in:

Instrumentation and Measurement, IEEE Transactions on  (Volume:59 ,  Issue: 2 )

Date of Publication:

Feb. 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.