By Topic

Fitting Spheres to Range Data From 3-D Imaging Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Franaszek, M. ; Nat. Inst. of Stand. & Technol., Gaithersburg, MD, USA ; Cheok, G.S. ; Saidi, K.S. ; Witzgall, C.

Two error functions used for nonlinear least squares (LS) fitting of spheres to range data from 3-D imaging systems are discussed: the orthogonal error function and the directional error function. Both functions allow unrestricted gradient-based minimization and were tested on more than 40 data sets collected under different experimental conditions (e.g., different sphere diameters, instruments, data density, and data noise). It was found that the orthogonal error function results in two local minima and that the outcome of the optimization depends on the choice of starting point. The centroid of the data points is commonly used as the starting point for the nonlinear LS solution, but the choice of starting point is sensitive to data segmentation and, for some sparse and noisy data sets, can lead to a spurious minimum that does not correspond to the center of a real sphere. The directional error function has only one minimum; therefore, it is not sensitive to the starting point and is more suitable for applications that require fully automated sphere fitting.

Published in:

Instrumentation and Measurement, IEEE Transactions on  (Volume:58 ,  Issue: 10 )