By Topic

High-fidelity image interpolation using radial basis function neural networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ahmed, F. ; Dayton Univ., OH, USA ; Gustafson, S.C. ; Karim, M.A.

Image interpolation using radial basis function (RBF) neural networks is accomplished. In this work the RBF network is first trained with the given image, satisfying the constraint of the gray value at each pixel. With the desired magnification ratio, each pixel is then divided into subpixels. The subpixel gray values are calculated using the trained network. Two dimensional Gaussian basis functions are used as the neurons in the hidden layer

Published in:

Aerospace and Electronics Conference, 1995. NAECON 1995., Proceedings of the IEEE 1995 National  (Volume:2 )

Date of Conference:

22-26 May 1995