By Topic

Bandwidth intensive 3-D FFT kernel for GPUs using CUDA

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Akira Nukada ; Tokyo Institute of Technology, Ookayama 2-12-1, Meguro-ku, 1528552, Japan ; Yasuhiko Ogata ; Toshio Endo ; Satoshi Matsuoka

Most GPU performance ldquohypesrdquo have focused around tightly-coupled applications with small memory bandwidth requirements e.g., N-body, but GPUs are also commodity vector machines sporting substantial memory bandwidth; however, effective programming methodologies thereof have been poorly studied. Our new 3-D FFT kernel, written in NVIDIA CUDA, achieves nearly 80 GFLOPS on a top-end GPU, being more than three times faster than any existing FFT implementations on GPUs including CUFFT. Careful programming techniques are employed to fully exploit modern GPU hardware characteristics while overcoming their limitations, including on-chip shared memory utilization, optimizing the number of threads and registers through appropriate localization, and avoiding low-speed stride memory accesses. Our kernel applied to real applications achieves orders of magnitude boost in power&cost vs. performance metrics. The off-card bandwidth limitation is still an issue, which could be alleviated somewhat with application kernels confinement within the card, while ideal solution being facilitation of faster GPU interfaces.

Published in:

2008 SC - International Conference for High Performance Computing, Networking, Storage and Analysis

Date of Conference:

15-21 Nov. 2008