By Topic

Bit precision analysis for compressed sensing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ehsan Ardestanizadeh ; ECE, UCSD, La Jolla, CA, 92093-0407, USA ; Mahdi Cheraghchi ; Amin Shokrollahi

This paper studies the stability of some reconstruction algorithms for compressed sensing in terms of the bit precision. Considering the fact that practical digital systems deal with discretized signals, we motivate the importance of the total number of accurate bits needed from the measurement outcomes in addition to the number of measurements. It is shown that if one uses a 2 k times n Vandermonde matrix with roots on the unit circle as the measurement matrix, O(lscr + k log n/k) bits of precision per measurement are sufficient to reconstruct a k-sparse signal x isin Ropfn with dynamic range (i.e., the absolute ratio between the largest and the smallest nonzero coefficients) at most 2lscr within lscr bits of precision, hence identifying its correct support. Finally, we obtain an upper bound on the total number of required bits when the measurement matrix satisfies a restricted isometry property, which is in particular the case for random Fourier and Gaussian matrices. For very sparse signals, the upper bound on the number of required bits for Vandermonde matrices is shown to be better than this general upper bound.

Published in:

2009 IEEE International Symposium on Information Theory

Date of Conference:

June 28 2009-July 3 2009